Année 2024-2025

Université de Bourgogne UFR Sciences et Techniques

Introduction to TQFT Midterm exam 13/03/2025

Lecture notes are allowed. All manifolds considered are compact and oriented.

Exercise 1:

So it $A = \mathbb{C}[x, y]/(x^2, y^2)$ and $\varepsilon : A \longrightarrow \mathbb{C}$ a linear form on A.

(1) Let $a, b, c, d = \varepsilon(1), \varepsilon(x), \varepsilon(y), \varepsilon(xy)$. Express the matrix of the pairing β in terms of a, b, c, d.

(2) Deduce that ε is a Frobenius form if and only if $\varepsilon(xy) \neq 0$.

(3) We now assume that a, b, c, d = 0, 0, 0, 1. Compute the co-product on A associated to ε .

Exercise 2:

Let G be a group and let Z be an abelian subgroup of G. We define a category \mathcal{C} by:

- $Obj(\mathcal{C}) = G.$
- For $g, h \in G$, we set $\operatorname{Hom}(g, h) = hZg^{-1}$.
- For $g_1, g_2, g_3 \in G$, $x \in \text{Hom}(g_2, g_3)$ and $y \in \text{Hom}(g_1, g_2)$, their composition is $xy \in \text{Hom}(g_1, g_3)$. (Here, xy is the product in G)
- (1) Show that the composition is well defined and that this definition indeed gives a category.
- (2) Let \Box be defined as follows. For $g, g', h, h' \in \text{Obj}(\mathcal{C})$ we set $g\Box h = gh$ and for $hzg^{-1} \in \text{Hom}(g, h)$ and $h'z'g'^{-1} \in \text{Hom}(g', h')$, we set $(hzg^{-1})\Box(h'z'g'^{-1}) = (hh')zz'(gg')^{-1}$. Show that (\mathcal{C}, \Box) is a strict monoidal category, and specify what is the monoidal unit.
- (3) For $g, h \in G$ we define $\tau_{g,h} \in \text{Hom}(g \Box h, h \Box g)$ by $\tau_{g,h} = hgh^{-1}g^{-1}$. Show that τ is a symmetric braiding on (\mathcal{C}, \Box) .

Exercice 3: Let F be a n + 1-dimensional TQFT over a field \mathbb{K} , let Σ, Σ' be closed oriented n-dimensional manifolds, and let $M : \Sigma \longrightarrow \Sigma$ be a cobordism. Let $\beta : \Sigma \coprod \overline{\Sigma} \longrightarrow \emptyset$ be a right U-tube.

Let $\mathcal{B} = (e_1, \ldots, e_n)$ and $\mathcal{B}^* = (e_1^*, \ldots, e_n^*)$ be basis of $F(\Sigma)$ and $F(\overline{\Sigma})$ such that $F(\beta)(e_i, e_j^*) = \delta_{ij}$.

Let $M^* : \overline{\Sigma} \longrightarrow \overline{\Sigma}$ be the cobordism obtained from M by reversing inwards and outwards boundary (while keeping the orientation of M). Show that the matrices of $F(M^*)$ in the basis \mathcal{B}^* is the transpose of the matrix of F(M) in the basis \mathcal{B} .

Hint: Write an equivalence of cobordism similar to the snake lemma, but with a cobordism M inserted.

Exercise 4: Let \mathbb{K} be a field. We say that a \mathbb{K} -valued invariant of closed oriented *n*-dimensional manifolds is *multiplicative* if it satisfies $I(M \coprod M') = I(M)I(M')$.

(1) Let F be an n + 1-TQFT and let I_F be the underlying invariant of closed oriented n + 1-dimensional manifold. Show that I_F is multiplicative.

From now on, I will denote a multiplicative invariant of closed oriented n + 1-manifolds.

(2) Let Σ be a closed oriented *n*-dimensional manifold. Let V_{Σ} be the K-vector space formally spanned by all cobordisms $M : \emptyset \longrightarrow \Sigma$. We define a bilinear map $\langle, \rangle_{\Sigma}$ on V_{Σ} by

$$\langle M, M' \rangle_{\Sigma} = I(M \bigcup_{\Sigma} \overline{M'})$$

when M, M' are cobordisms $\emptyset \longrightarrow \Sigma$ and extend bilinearily. Let $N_{\Sigma} \subset V_{\Sigma}$ be the left kernel of $\langle , \rangle_{\Sigma}$, that is

$$x \in N_{\Sigma} \Leftrightarrow \forall y \in V_{\Sigma}, \langle x, y \rangle_{\Sigma} = 0.$$

For $M: \Sigma \longrightarrow \Sigma'$ a cobordism, we define a linear map $f_M: V_{\Sigma} \longrightarrow V_{\Sigma'}$ by

$$f_M(M_0) = M \underset{\Sigma}{\cup} M_0$$

when M_0 is a cobordism $\emptyset \longrightarrow \Sigma$. Show that $f_M(N_{\Sigma}) \subset N_{\Sigma'}$.

(3) For Σ a closed oriented *n*-dimensional manifold, we set $F_I(\Sigma) = V_{\Sigma}/N_{\Sigma}$.

For $M: \Sigma \longrightarrow \Sigma'$ a cobordism, we set $F_I(M): F_I(\Sigma) \longrightarrow F_I(\Sigma')$ to be the map induced by f_M .

Show that F_I is a functor $\operatorname{Cob}^{n+1} \longrightarrow \operatorname{Vect}_{\mathbb{K}}$.

In the next questions, we will show that F_I is not necessarily a monoidal functor.

(4) Let I be the multiplicative invariant of surfaces such that $I(\Sigma_g) = g$. For $g, b \ge 0$ denote by $\Sigma_{g,b}$ the unique connected cobordism $\emptyset \to \coprod_{1 \le i \le b} S^1$ whose underlying surface has genus g and b boundary components. Show that for all $k \ge 2$,

$$\Sigma_{k,1} - k\Sigma_{1,1} + (k-1)\Sigma_{0,1} \in N_{S^1}.$$

(5) Show that $F_I(S^1)$ has dimension 2 and is spanned by $\Sigma_{0,1}$ and $\Sigma_{1,1}$.

(6) Let

$$x = (\Sigma_{1,1} \coprod \Sigma_{0,1}) + (\Sigma_{0,1} \coprod \Sigma_{1,1}) - 2(\Sigma_{0,1} \coprod \Sigma_{0,1}) - \Sigma_{0,2} \in V_{S^1 \coprod S^1}.$$

Show that for any $g_1, g_2 \ge 0$, one has

$$\langle \Sigma_{g_1,1} \coprod \Sigma_{g_2,1}, x \rangle_{S^1 \coprod S^1} = 0.$$

(7) Show that

$$\langle \Sigma_{0,2}, x \rangle \neq 0.$$

Deduce that the $\Sigma_{i,1} \coprod \Sigma_{j,1}$ for $i, j \in \{0, 1\}$ and $\Sigma_{0,2}$ are linearly independent in $F_I(S^1 \coprod S^1)$, and that F_I is not a monoidal functor.