Introduction to TQFT Midterm exam 07/03/2024

All compositions of maps are written using the convention in Kock's book. All manifolds considered are compact and oriented.

Exercice 1:

(1) Let F be a $n+1$-dimensional TQFT over a field \mathbb{K}, let M be a n-dimensional manifold, and let $W: M \rightarrow M$ be a cobordism. Show that if $F(W)$ is non-invertible, then W is not equivalent to a mapping cylinder.
(2) We now assume that $n=2$. Let Σ_{g} denote the closed compact oriented surface of genus g. Let S and S^{\prime} be two surfaces, and let $M: S \rightarrow S^{\prime}$ be a connected $2+1$-cobordism. Show that if $\operatorname{dim} F\left(\Sigma_{g}\right)<r k(F(M))$, then there is no embedding $i: \Sigma_{g} \longrightarrow M$, such that $M \backslash i\left(\Sigma_{g}\right)$ is disconnected.

Exercise 2:

Let $n \geq 2$ be an integer, let $A=\mathbb{C}[t] /\left(t^{n}\right)$ and let $\varepsilon: A \rightarrow \mathbb{C}$ be a linear form on A.
(1) Show that ε is a Frobenius form if and only if $\varepsilon\left(t^{n-1}\right) \neq 0$.
(2) For $0 \leq i \leq n-1$, we set $a_{i}=\varepsilon\left(t^{i}\right)$. Express the matrix of the pairing β in the basis $\left\{1, t, \ldots, t^{n-1}\right\}$ in terms of a_{0}, \ldots, a_{n-1}.
(3) Show that the matrix of the co-pairing α is

$$
\left(\begin{array}{cccc}
0 & \cdots & 0 & b_{n-1} \\
\vdots & . \cdot & b_{n-1} & b_{n-2} \\
0 & . \cdot & . \cdot & \vdots \\
b_{n-1} & b_{n-2} & \cdots & b_{0}
\end{array}\right)
$$

where $b_{n-1}=\frac{1}{a_{n-1}}$, and for any $2 \leq i \leq n$,

$$
b_{n-i}=-\frac{\left(a_{n-2} b_{n-i+1}+\ldots+a_{n-i} b_{n-1}\right)}{a_{n-1}}
$$

(4) Let F_{A} be the $1+1$-TQFT associated to A. Show that the handle element for F_{A} is

$$
w=\frac{n t^{n-1}}{a_{n-1}}
$$

(5) Compute $F_{A}\left(\Sigma_{g}\right)$ for any connected closed oriented surface of genus $g \geq 0$.

Exercise 3:

Let $(A, \mu, 1, \Delta, \varepsilon)$ be a Frobenius algebra, and assume that the product is commutative.
(1) Show that $\alpha \circ \tau=\alpha$, where α is the co-pairing and $\tau: A \otimes A \rightarrow A \otimes A$ is the twist.
(2) Using the two expressions of Δ in terms of the co-pairing, show that the co-product is cocommutative.

Exercise 4:

In this exercise, we will study the monoidal functors from the category Tangles of tangles in $D^{2} \times[0,1]$ to the category Vect $\mathbb{K}_{\mathbb{K}}$ of \mathbb{K}-vector spaces. We recall that the category of tangles is generated by the elementary tangles represented in the diagram below:

 $n=$

We also denote as p the object of Tangles consisting of a single point in D^{2}.
(1) Let F : Tangles \longrightarrow Vect $_{\mathbb{K}}$ be a monoidal functor. Let $V=F(p), R=F\left(c_{+}\right), R^{\prime}=$ $F\left(c_{-}\right), \alpha=F(u)$, and $\beta=F(n)$.

Show that the following relations are satisfied:

$$
\begin{align*}
R R^{\prime}=R^{\prime} R= & \mathrm{id}_{V \otimes V} \tag{1}\\
\left(R \otimes i d_{V}\right)\left(i d_{V} \otimes R\right)\left(R \otimes i d_{V}\right)= & \left(i d_{V} \otimes R\right)\left(R \otimes i d_{V}\right)\left(i d_{V} \otimes R\right) \tag{2}\\
R \beta=\beta, & \alpha R=\alpha \tag{3}\\
\left(\alpha \otimes i d_{V}\right)\left(i d_{V} \otimes \beta\right)= & i d_{V}=\left(i d_{V} \otimes \alpha\right)\left(\beta \otimes i d_{V}\right) \tag{4}
\end{align*}
$$

(2) Deduce from Equation (4) above that V is finite dimensional.
(3) We call a link with $n \geq 1$ components an isotopy class of embeddings of $\coprod_{i=1}^{n} S^{1}$ in the interior of $D^{2} \times[0,1]$.

Explain why a monoidal functor $F:$ Tangles \longrightarrow Vect $_{\mathbb{K}}$ induces a \mathbb{K}-valued invariant of links.

