Année 2023-2024

Université de Bourgogne UFR Sciences et Techniques

Introduction to TQFT Midterm exam 07/03/2024

All compositions of maps are written using the convention in Kock's book. All manifolds considered are compact and oriented.

Exercice 1:

(1) Let F be a n + 1-dimensional TQFT over a field \mathbb{K} , let M be a n-dimensional manifold, and let $W : M \to M$ be a cobordism. Show that if F(W) is non-invertible, then W is not equivalent to a mapping cylinder.

(2) We now assume that n = 2. Let Σ_g denote the closed compact oriented surface of genus g. Let S and S' be two surfaces, and let $M : S \to S'$ be a connected 2 + 1-cobordism. Show that if dim $F(\Sigma_g) < rk(F(M))$, then there is no embedding $i : \Sigma_g \longrightarrow M$, such that $M \setminus i(\Sigma_g)$ is disconnected.

Exercise 2:

Let $n \geq 2$ be an integer, let $A = \mathbb{C}[t]/(t^n)$ and let $\varepsilon : A \to \mathbb{C}$ be a linear form on A.

(1) Show that ε is a Frobenius form if and only if $\varepsilon(t^{n-1}) \neq 0$.

(2) For $0 \le i \le n-1$, we set $a_i = \varepsilon(t^i)$. Express the matrix of the pairing β in the basis $\{1, t, \ldots, t^{n-1}\}$ in terms of a_0, \ldots, a_{n-1} .

(3) Show that the matrix of the co-pairing α is

$$\begin{pmatrix} 0 & \dots & 0 & b_{n-1} \\ \vdots & \ddots & b_{n-1} & b_{n-2} \\ 0 & \ddots & \ddots & \vdots \\ b_{n-1} & b_{n-2} & \dots & b_0 \end{pmatrix},$$

where $b_{n-1} = \frac{1}{a_{n-1}}$, and for any $2 \le i \le n$,

$$b_{n-i} = -\frac{(a_{n-2}b_{n-i+1} + \ldots + a_{n-i}b_{n-1})}{a_{n-1}}.$$

(4) Let F_A be the 1 + 1-TQFT associated to A. Show that the handle element for F_A is

$$w = \frac{nt^{n-1}}{a_{n-1}}.$$

(5) Compute $F_A(\Sigma_g)$ for any connected closed oriented surface of genus $g \ge 0$.

Exercise 3:

Let $(A, \mu, 1, \Delta, \varepsilon)$ be a Frobenius algebra, and assume that the product is commutative.

(1) Show that $\alpha \circ \tau = \alpha$, where α is the co-pairing and $\tau : A \otimes A \to A \otimes A$ is the twist.

(2) Using the two expressions of Δ in terms of the co-pairing, show that the co-product is cocommutative.

Exercise 4:

In this exercise, we will study the monoidal functors from the category Tangles of tangles in $D^2 \times [0, 1]$ to the category $\operatorname{Vect}_{\mathbb{K}}$ of \mathbb{K} -vector spaces. We recall that the category of tangles is generated by the elementary tangles represented in the diagram below:

$$c_{+} =$$
 $c_{-} =$ $n =$ $u =$

We also denote as p the object of Tangles consisting of a single point in D^2 .

(1) Let F: Tangles \longrightarrow Vect_K be a monoidal functor. Let $V = F(p), R = F(c_+), R' = F(c_-), \alpha = F(u)$, and $\beta = F(n)$.

Show that the following relations are satisfied:

 $(R \otimes$

$$RR' = R'R = \mathrm{id}_{V\otimes V},\tag{1}$$

$$id_V)(id_V \otimes R)(R \otimes id_V) = (id_V \otimes R)(R \otimes id_V)(id_V \otimes R),$$
(2)

$$R\beta = \beta, \qquad \alpha R = \alpha, \tag{3}$$

$$(\alpha \otimes id_V)(id_V \otimes \beta) = id_V = (id_V \otimes \alpha)(\beta \otimes id_V).$$
(4)

(2) Deduce from Equation (4) above that V is finite dimensional.

(3) We call a link with $n \ge 1$ components an isotopy class of embeddings of $\prod_{i=1}^{n} S^{1}$ in the interior of $D^{2} \times [0, 1]$.

Explain why a monoidal functor $F : \text{Tangles} \longrightarrow \text{Vect}_{\mathbb{K}}$ induces a \mathbb{K} -valued invariant of links.