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Exercice 1:

We need to show that G is a symmetric monoidal functor, meaning that it respects compo-
sition and monoidal product and the symmetric braiding. Let (M,X,%) and (M', ¥, ¥") be
n — d + 1-dimension cobordisms. Let us note that the composition of M x S and M’ x S is the
same as (M o M') x S. Hence

G(MoM") = F(MoM')xS) = F((MxS)o(M'x8)) = F(MxS)oF(M'xS) =G(M)oG(M").
Moreover, for 3 an n — d-dimensional manifold, we have
G(Z X I) = F((E X I) X S) = F((E X S) X I) :idF(EXS) :idcf(z),

hence G sends the identity morphism to the identity morphism.

Similarly, for () the empty n — d-manifold, we note that §) x S = 0. Hence G(0) = F(
so G sends the monoidal unit to the monoidal unit. (also, the empty n—d+1 cobordism (
is sent by G to the identity map K — K.)

We also have that for any two n — d-manifolds,

)=K
(Z),(Z),

G2 =F(E]]2)x8) =FExS[[¥ xS =F(Ex 8@ F(X xS) =G(2)aG(Y),
and similarly for M, M’ two n — d + 1 cobordisms,
GM M) = F(M]]M)xS) = F(MxS[M'xS) = F(MxS)®F(M'xS) = G(M)®G(M').

Finally, for ¥,% two n — d dimensional manifold, if T% sy is the twist cobordism on X,
then Ty, 5y x S is the twist cobordism on ¥ x S,%' x S. Therefore,

G(Tex) = F(Tsxs5/x5) = TR(ExS),F(5'xS) = TG(X),G(5)>

where for two K-vector spaces V, W the map 7y is the symmetric braiding map: 7w (v@w) =
w Q.

Exercise 2:
The manifold My is diffeomorphic to the following composition of cobordisms:

N S




Let e1,...,e, and €],. .., el be basis of F(X) and F(X). We have seen (as a consequence of the
snake relation) that F(a)(1 ) = > a;je;®@¢; and that F'(B)(e;, €}) = b; j, where the matrices
1<ij<n
A and "B are inverse of each other. Let M = (m;;) be the matrix of p(f) = F(C}) in the basis
(61, ceey en).
We have that

F(My) = F(a)(F(Cy) @ idps)F(B) =B | D aymuier @ ¢

1<i,j,k<n

= Z @ijMipiblj = Tr(A'BM) = Tr(M) = Te(p(f)).

1< j,k<n

Exercise 3:

First, notice that all the usual 1 4 1-cobordisms are morphisms in the category PCob'*!,
as cobordisms containing an empty collection of arcs. Moreover, the relations between those
cobordisms that hold in Cob'*! still hold in PCob' 1. (one may say that Cob'*! is a subcategory
of PCob'*1). Therefore, one can define a commutative algebra structure on A = F((S*,())) using
the maps induced by the usual cobordisms:

@@@@

Now, consider the following cobordism in PCob!*™! going from (S1, ) [T(S!, {*}) to (S1, {*}) :
f

Its image by F'is a linear map f: A® M — M. We define the A-module structure on M by
am = f(a®m) for a € A and m € M.

To check that this is indeed a module structure, we need to see if it is compatible with
multiplication in A, i.e. a(bm) = (ab)m. In terms of the maps f and the multiplication map g,
this is equivalent to the relation (ids ® f)f = (u®idpr) f- We claim this is the case because we
have the following equivalence of cobordisms:




A similar diagram will show that multiplication by the unit induces the identity on M.
Exercise 4:

(1) The closed surface of genus g can be expressed in terms of elementary cobordisms as the
composition 1(Apu)9e. Since Ay is the multiplication by w, we get Fa(X,) = (1 - w9) = e(w9).

(2) Since A has finite dimension n, the powers 1, w, ..., w"™ must be linearly dependent. Let
d be the least integer such that the powers 1, w, ..., w? are linearly dependent, then w? must be
a linear combination of 1,..., w1 :
d d—1

w'=agl +...+ag_qw" .
Then, for any m > 0, we have

flmtd) = (™) = e(w™w) = age(w™)+. . +ag_12 (@) = ag f(m)-+.. +ag 1 f(m+d—1).

(3) € is a Frobenius form on A if and only if its kernel does not contain any non trivial ideal
of A. Since A =K, this happens if and only if € # 0, i.e. (1) € K\ {0}, since the kernel of ¢ is
then {0}.

We have seen that the handle element can be expressed as Y a; je;e; if the matrix of the

1<ij<n
co-pairing is A = (a;;) in a basis {e1,...,e,} of A. Here we choose 1 € K = A as our basis of A.
The matrix of the pairing f(x,y) = e(xy) is the 1 x 1 matrix («), therefore the matrix of the
co-pairing is (a~!). Thus w = o~ 1.
Finally, we get
flg) =e(w?) =e(a™) = a™%(1) =a' 7.

If " =1, then f(g+n) = f(g) and F4 does not distinguish all connected surfaces. If however
o is not a root of unity, then al=9 # al=9 for g # ¢’ and F4 distinguishes all connected surfaces.
However, we have for example

FAT? ] T?) = Fa(T?)? = 17 = 1 = Fu(T?),

so F4 does not distinguish the torus from the disjoint union of two tori.

(4) Similarly, let ey, ..., e, be the canonical basis of C", we have e;e; = 0if i # j and e? = ¢
if i = j. The matrix of the pairing has coefficients ;; = e(eje;) = 0if i # j, and B;; = e(e;) =
if ¢ = 5. This is the diagonal matrix with diagonal (aq, ..., ay), so the matrix of the co-pairing
is the diagonal matrix with diagonal (a;?,...,a;!). Therefore,

w=ayle; +...+ayte, = (a7t ... 0, t).
Thus
Fa(3,) =e(w?) =e(ay?,...,a59) =7 94 ... + a9

(5) Let ¥ and X/ be two closed orientable surfaces, and let g; > go... > g be the genera of
the components of ¥, and g] > ... > g/ be the genera of the components of ¥'. The surfaces X
and X' are diffeomorphic if and only if k¥ = and g; = ¢} for all . By monoidality, the invariant
of ¥ is the product of the invariants of its connected components, and same for X'.



Hence if Fy(X) = F4(X') then

1—

1— 1— 1- 1— 1- 1— 1-g) | 1-g] 1—g} 1-g;
(g ey M) Pray ) (o Ty ™) = (o Py (e . :

Zral ™) (o Ttay ).
Since aq, ay are algebraically independent, we have the equality of polynomials in C[X*!, Y*+1] :
(X1 yt-oy (X2 yl=e) (X194 y o) = (X0 y ) (X R ey te) (XYY 9),

If for instance g1 > g} and g1 > 3 then the left hand side is zero when evaluated at (1, () where

(= 6911%1, while the right hand side is non zero. If one of the two surface contains a connected
component of genus at least 3, the other has the same maximal genus among its components;
then we can erase those components from ¥ and X while keeping F4(X) = F4(X'). Therefore
we assume that both contain only components of genus 0,1 or 2. Let ng, n1, ny be the number of
components of genus 0, 1,2 for ¥, and similarly n(,n},n5 for ¥'. The equality Fa(X) = Fa(X')
can now be rewritten

2M(X + V) (X Y™ = 2 (X 4 Y) (X T+ Y ),

Evaluating at X =Y =1 we get ng + n1 + ng = ny +n} + nb, looking at the maximal degree in
X we get ng = n(, and looking at the total degree we get ng — ny = nj, — nl,. Therefore n; = n
for i =0,1,2 and ¥ ~ X',



