UFR Sciences et Techniques

Introduction to TQFT Midterm exam: Solutions

Exercice 1:

We need to show that G is a symmetric monoidal functor, meaning that it respects composition and monoidal product and the symmetric braiding. Let ($M, \Sigma, \Sigma^{\prime}$) and ($M^{\prime}, \Sigma^{\prime}, \Sigma^{\prime \prime}$) be $n-d+1$-dimension cobordisms. Let us note that the composition of $M \times S$ and $M^{\prime} \times S$ is the same as $\left(M \circ M^{\prime}\right) \times S$. Hence
$G\left(M \circ M^{\prime}\right)=F\left(\left(M \circ M^{\prime}\right) \times S\right)=F\left((M \times S) \circ\left(M^{\prime} \times S\right)\right)=F(M \times S) \circ F\left(M^{\prime} \times S\right)=G(M) \circ G\left(M^{\prime}\right)$.
Moreover, for Σ an n - d-dimensional manifold, we have

$$
G(\Sigma \times I)=F((\Sigma \times I) \times S)=F((\Sigma \times S) \times I)=i d_{F(\Sigma \times S)}=i d_{G(\Sigma)}
$$

hence G sends the identity morphism to the identity morphism.
Similarly, for \emptyset the empty $n-d$-manifold, we note that $\emptyset \times S=\emptyset$. Hence $G(\emptyset)=F(\emptyset)=\mathbb{K}$, so G sends the monoidal unit to the monoidal unit. (also, the empty $n-d+1$ cobordism $(\emptyset, \emptyset, \emptyset)$ is sent by G to the identity map $\mathbb{K} \rightarrow \mathbb{K}$.)

We also have that for any two $n-d$-manifolds,
$G\left(\Sigma \coprod \Sigma^{\prime}\right)=F\left(\left(\Sigma \coprod \Sigma^{\prime}\right) \times S\right)=F\left(\Sigma \times S \coprod \Sigma^{\prime} \times S\right)=F(\Sigma \times S) \otimes F\left(\Sigma^{\prime} \times S\right)=G(\Sigma) \otimes G\left(\Sigma^{\prime}\right)$,
and similarly for M, M^{\prime} two $n-d+1$ cobordisms,
$G\left(M \coprod M^{\prime}\right)=F\left(\left(M \coprod M^{\prime}\right) \times S\right)=F\left(M \times S \coprod M^{\prime} \times S\right)=F(M \times S) \otimes F\left(M^{\prime} \times S\right)=G(M) \otimes G\left(M^{\prime}\right)$
Finally, for Σ, Σ^{\prime} two $n-d$ dimensional manifold, if $T_{\Sigma, \Sigma^{\prime}}$ is the twist cobordism on Σ, Σ^{\prime} then $T_{\Sigma, \Sigma^{\prime}} \times S$ is the twist cobordism on $\Sigma \times S, \Sigma^{\prime} \times S$. Therefore,

$$
G\left(T_{\Sigma, \Sigma^{\prime}}\right)=F\left(T_{\Sigma \times S, \Sigma^{\prime} \times S}\right)=\tau_{F(\Sigma \times S), F\left(\Sigma^{\prime} \times S\right)}=\tau_{G(\Sigma), G\left(\Sigma^{\prime}\right)}
$$

where for two \mathbb{K}-vector spaces V, W the map $\tau_{V, W}$ is the symmetric braiding map: $\tau_{V, W}(v \otimes w)=$ $w \otimes v$.

Exercise 2:

The manifold M_{f} is diffeomorphic to the following composition of cobordisms:

Let e_{1}, \ldots, e_{n} and $e_{1}^{\prime}, \ldots, e_{n}^{\prime}$ be basis of $F(\Sigma)$ and $F(\bar{\Sigma})$. We have seen (as a consequence of the snake relation) that $F(\alpha)(1)=\sum_{1 \leq i, j \leq n} a_{i, j} e_{i} \otimes e_{j}^{\prime}$ and that $F(\beta)\left(e_{i}, e_{j}^{\prime}\right)=b_{i, j}$, where the matrices A and ${ }^{t} B$ are inverse of each other. Let $M=\left(m_{i j}\right)$ be the matrix of $\rho(f)=F\left(C_{f}\right)$ in the basis $\left(e_{1}, \ldots, e_{n}\right)$.

We have that

$$
\begin{aligned}
F\left(M_{f}\right)=F(\alpha)\left(F\left(C_{f}\right) \otimes i d_{F(\bar{\Sigma})}\right) F(\beta) & =\beta\left(\sum_{1 \leq i, j, k \leq n} a_{i j} m_{k i} e_{k} \otimes e_{j}^{\prime}\right) \\
& =\sum_{1 \leq i, j, k \leq n} a_{i j} m_{k i} b_{k j}=\operatorname{Tr}\left(A^{t} B M\right)=\operatorname{Tr}(M)=\operatorname{Tr}(\rho(f)) .
\end{aligned}
$$

Exercise 3:

First, notice that all the usual $1+1$-cobordisms are morphisms in the category PCob^{1+1}, as cobordisms containing an empty collection of arcs. Moreover, the relations between those cobordisms that hold in $C o b^{1+1}$ still hold in $P C o b^{1+1}$. (one may say that $C o b^{1+1}$ is a subcategory of $\left.P C o b^{1+1}\right)$. Therefore, one can define a commutative algebra structure on $A=F\left(\left(S^{1}, \emptyset\right)\right)$ using the maps induced by the usual cobordisms:

Now, consider the following cobordism in $P C o b^{1+1}$ going from $\left(S^{1}, \emptyset\right) \amalg\left(S^{1},\{*\}\right)$ to $\left(S^{1},\{*\}\right)$:

Its image by F is a linear map $f: A \otimes M \rightarrow M$. We define the A-module structure on M by $a m=f(a \otimes m)$ for $a \in A$ and $m \in M$.

To check that this is indeed a module structure, we need to see if it is compatible with multiplication in A, i.e. $a(b m)=(a b) m$. In terms of the maps f and the multiplication map μ, this is equivalent to the relation $\left(i d_{A} \otimes f\right) f=\left(\mu \otimes i d_{M}\right) f$. We claim this is the case because we have the following equivalence of cobordisms:

A similar diagram will show that multiplication by the unit induces the identity on M.

Exercise 4:

(1) The closed surface of genus g can be expressed in terms of elementary cobordisms as the composition $1(\Delta \mu)^{g} \varepsilon$. Since $\Delta \mu$ is the multiplication by w, we get $F_{A}\left(\Sigma_{g}\right)=\varepsilon\left(1 \cdot w^{g}\right)=\varepsilon\left(w^{g}\right)$.
(2) Since A has finite dimension n, the powers $1, w, \ldots, w^{n}$ must be linearly dependent. Let d be the least integer such that the powers $1, w, \ldots, w^{d}$ are linearly dependent, then w^{d} must be a linear combination of $1, \ldots, w^{d-1}$:

$$
w^{d}=a_{0} 1+\ldots+a_{d-1} w^{d-1} .
$$

Then, for any $m \geq 0$, we have
$f(m+d)=\varepsilon\left(w^{m+d}\right)=\varepsilon\left(w^{m} w^{d}\right)=a_{0} \varepsilon\left(w^{m}\right)+\ldots+a_{d-1} \varepsilon\left(w^{m+d-1}\right)=a_{0} f(m)+\ldots+a_{d-1} f(m+d-1)$.
(3) ε is a Frobenius form on A if and only if its kernel does not contain any non trivial ideal of A. Since $A=\mathbb{K}$, this happens if and only if $\varepsilon \neq 0$, i.e. $\varepsilon(1) \in \mathbb{K} \backslash\{0\}$, since the kernel of ε is then $\{0\}$.

We have seen that the handle element can be expressed as $\sum_{1 \leq i, j \leq n} a_{i, j} e_{i} e_{j}$ if the matrix of the co-pairing is $A=\left(a_{i j}\right)$ in a basis $\left\{e_{1}, \ldots, e_{n}\right\}$ of A. Here we choose $1 \in \mathbb{K}=A$ as our basis of A. The matrix of the pairing $\beta(x, y)=\varepsilon(x y)$ is the 1×1 matrix (α), therefore the matrix of the co-pairing is $\left(\alpha^{-1}\right)$. Thus $w=\alpha^{-1}$.

Finally, we get

$$
f(g)=\varepsilon\left(w^{g}\right)=\varepsilon\left(\alpha^{-g}\right)=\alpha^{-g} \varepsilon(1)=\alpha^{1-g} .
$$

If $\alpha^{n}=1$, then $f(g+n)=f(g)$ and F_{A} does not distinguish all connected surfaces. If however α is not a root of unity, then $\alpha^{1-g} \neq \alpha^{1-g^{\prime}}$ for $g \neq g^{\prime}$ and F_{A} distinguishes all connected surfaces. However, we have for example

$$
F_{A}\left(T^{2} \coprod T^{2}\right)=F_{A}\left(T^{2}\right)^{2}=1^{2}=1=F_{A}\left(T^{2}\right),
$$

so F_{A} does not distinguish the torus from the disjoint union of two tori.
(4) Similarly, let e_{1}, \ldots, e_{n} be the canonical basis of \mathbb{C}^{n}, we have $e_{i} e_{j}=0$ if $i \neq j$ and $e_{i}^{2}=e_{i}$ if $i=j$. The matrix of the pairing has coefficients $\beta_{i j}=\varepsilon\left(e_{i} e_{j}\right)=0$ if $i \neq j$, and $\beta_{i i}=\varepsilon\left(e_{i}\right)=\alpha_{i}$ if $i=j$. This is the diagonal matrix with diagonal $\left(\alpha_{1}, \ldots, \alpha_{n}\right)$, so the matrix of the co-pairing is the diagonal matrix with diagonal $\left(\alpha_{1}^{-1}, \ldots, \alpha_{n}^{-1}\right)$. Therefore,

$$
w=\alpha_{1}^{-1} e_{1}+\ldots+\alpha_{n}^{-1} e_{n}=\left(\alpha_{1}^{-1}, \ldots, \alpha_{n}^{-1}\right) .
$$

Thus

$$
F_{A}\left(\Sigma_{g}\right)=\varepsilon\left(w^{g}\right)=\varepsilon\left(\alpha_{1}^{-g}, \ldots, \alpha_{n}^{-g}\right)=\alpha_{1}^{1-g}+\ldots+\alpha_{n}^{1-g} .
$$

(5) Let Σ and Σ^{\prime} be two closed orientable surfaces, and let $g_{1} \geq g_{2} \ldots \geq g_{k}$ be the genera of the components of Σ, and $g_{1}^{\prime} \geq \ldots \geq g_{l}^{\prime}$ be the genera of the components of Σ^{\prime}. The surfaces Σ and Σ^{\prime} are diffeomorphic if and only if $k=l$ and $g_{i}=g_{i}^{\prime}$ for all i. By monoidality, the invariant of Σ is the product of the invariants of its connected components, and same for Σ^{\prime}.

Hence if $F_{A}(\Sigma)=F_{A}\left(\Sigma^{\prime}\right)$ then
$\left(\alpha_{1}^{1-g_{1}}+\alpha_{2}^{1-g_{1}}\right)\left(\alpha_{1}^{1-g_{2}}+\alpha_{2}^{1-g_{2}}\right) \ldots\left(\alpha_{k}^{1-g_{k}}+\alpha_{2}^{1-g_{k}}\right)=\left(\alpha_{1}^{1-g_{1}^{\prime}}+\alpha_{2}^{1-g_{1}^{\prime}}\right)\left(\alpha_{1}^{1-g_{2}^{\prime}}+\alpha_{2}^{1-g_{2}^{\prime}}\right) \ldots\left(\alpha_{k}^{1-g_{l}^{\prime}}+\alpha_{2}^{1-g_{l}^{\prime}}\right)$.
Since α_{1}, α_{2} are algebraically independent, we have the equality of polynomials in $\mathbb{C}\left[X^{ \pm 1}, Y^{ \pm 1}\right]$:
$\left(X^{1-g_{1}}+Y^{1-g_{1}}\right)\left(X^{1-g_{2}}+Y^{1-g_{2}}\right) \ldots\left(X^{1-g_{k}}+Y^{1-g_{k}}\right)=\left(X^{1-g_{1}^{\prime}}+Y^{1-g_{1}^{\prime}}\right)\left(X^{1-g_{2}^{\prime}}+Y^{1-g_{2}^{\prime}}\right) \ldots\left(X^{1-g_{l}^{\prime}}+Y^{1-g_{l}^{\prime}}\right)$.
If for instance $g_{1}>g_{1}^{\prime}$ and $g_{1} \geq 3$ then the left hand side is zero when evaluated at $(1, \zeta)$ where $\zeta=e^{\frac{i \pi}{g_{1}-1}}$, while the right hand side is non zero. If one of the two surface contains a connected component of genus at least 3 , the other has the same maximal genus among its components; then we can erase those components from Σ and Σ^{\prime} while keeping $F_{A}(\Sigma)=F_{A}\left(\Sigma^{\prime}\right)$. Therefore we assume that both contain only components of genus 0,1 or 2 . Let n_{0}, n_{1}, n_{2} be the number of components of genus $0,1,2$ for Σ, and similarly $n_{0}^{\prime}, n_{1}^{\prime}, n_{2}^{\prime}$ for Σ^{\prime}. The equality $F_{A}(\Sigma)=F_{A}\left(\Sigma^{\prime}\right)$ can now be rewritten

$$
2^{n_{1}}(X+Y)^{n_{0}}\left(X^{-1}+Y^{-1}\right)^{n_{2}}=2^{n_{1}^{\prime}}(X+Y)^{n_{0}^{\prime}}\left(X^{-1}+Y^{-1}\right)^{n_{2}^{\prime}}
$$

Evaluating at $X=Y=1$ we get $n_{0}+n_{1}+n_{2}=n_{0}^{\prime}+n_{1}^{\prime}+n_{2}^{\prime}$, looking at the maximal degree in X we get $n_{0}=n_{0}^{\prime}$ and looking at the total degree we get $n_{0}-n_{2}=n_{0}^{\prime}-n_{2}^{\prime}$. Therefore $n_{i}=n_{i}^{\prime}$ for $i=0,1,2$ and $\Sigma \simeq \Sigma^{\prime}$.

