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Introduction to TQFT
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Lecture notes are allowed. All manifolds considered are compact and oriented.

Exercise 1:

Soit A = Clx,y]/(2?,y?) and € : A — C a linear form on A.

(1) Let a,b,c,d = ¢(1),e(x),e(y), e(xy). Express the matrix of the pairing 5 in terms of
a,b,c,d.

Solution: The pairing is the map such that for z,¢t € A, B(z,t) = (zt). Therefore its matrix
in the basis {1, x,y,zy} is

B = Mat{l,m,y,xy}(ﬁ) =

QU O o
O Qoo
S O Qa0
O O O

(2) Deduce that ¢ is a Frobenius form if and only if e(zy) # 0.

Solution: € is a Frobenius form if and only if the associated pairing is non-degenerate, that
is, if and only if B = Mat(B) is invertible. Since det B = —d*, this is the case iff e(zy) # 0.

(3) We now assume that a,b,c,d = 0,0,0,1. Compute the co-product on A associated to e.

Solution: We first compute the matrix A of the co-pairing « :

-1

0 0 01 0001
0010 0010
_tp-1_t _
A="B" = 0100 {01 0 0}’
1 000 1 000

hence a(1) = 1@zy+2xQy+yRz+rxy®1. Now, we apply the formula A = (u®ida)(ida®@«a). For
te A weget A(t) = (u®ids)(tR(1R@zy+rRy+yRr+ry®1)) = tQry+trRy+tyQrt+try1.
In particular,

(1) = I@w+zRy+yRr+ryx1l
Alx) = zQuy+rzy®x
(y) YRy +ry @y
) = zyQuy.

Exercise 2:
Let G be a group and let Z be an abelian subgroup of GG. We define a category C by:
- 0bj(C) =G.

- For g,h € G, we set Hom(g,h) = hZg~ 1.



- For ¢g1,92,93 € G, * € Hom(go,93) and y € Hom(gi,g2), their composition is zy €
Hom(g1, g3). (Here, xy is the product in G)

(1) Show that the composition is well defined and that this definition indeed gives a category.

Solution: First, we note that the composition of z € Hom(ge, g3) and y € Hom(g1, g2) is

indeed in Hom(g1, g3). Writing = = ggzggl and y = ggz’gfl where 2,2’ € Z, we have

vy = g322'g7 " € Hom(g1, g3),

since Z is a subgroup.
The associativity of composition follows directly from the associativity of the group law.

Let e be the identity element of G. For any g € Obj(C), one has e = geg~! € Hom(g, g).
Furthermore, since e is an identity element, for h another object of C one has ex = x for all
x € Hom(g, h), and xe = x for all x € Hom(h, g). Therefore e plays the role of an identity
morphism, and C is a category.

(2) Let O be defined as follows. For g,¢’,h,h’ € Obj(C) we set gC0h = gh and for hzg~' €
Hom(g, h) and h'2'¢g'~' € Hom(g/, 1), we set (hzg~")O(W2'¢'~') = (hh')2z2'(9¢')~". Show
that (C,0) is a strict monoidal category, and specify what is the monoidal unit.

Solution: We first check that [J is a functor C x C — C, that is, that [ is compatible
with composition. For g,¢',h,h t,t' € Obj(C) and f1 = hz1g~ !, fo = h'2eg ", f3 =
tzsh™Y, f1 = t'z4h'~! in Hom(g, h), Hom(g’, h'), Hom(h,t), Hom(h/,t'), one has

(f3074)(f10f2) = (tzsh™ 'Ot z4h' ) (hz1g™ 'O 209'") = (tt'2324(hR') 1) (hh' 2122(g99") )
= tt/Z3Z42122(gg/)_1 = tt' z3212420(g9g )t = tzgzig YO 24209t = fafillfafo

where the fourth equality uses that Z is abelian.
Moreover, we have for g,h € G, idy0id, = geg~'Oheh™ = (gh)e(gh)™" = idgp,.

The associativity of (0 on Obj(C) and on morphisms is clear and follows from the associa-
tivity of the product in G. Moreover, e[lg = gle = g for any g € Obj(C), since e is the
identity element in C. Furthermore, for g, h € Obj(C) and = = hzg~! € Hom(g, h), one has
id.Ox = (eh)ez(eg) ™t = hzg~! = x. Similarly, x0id, = . So e is a monoidal unit.

(3) For g,h € G we define 7,;, € Hom(gOh,hOg) by 7,5, = hgh~'g~'. Show that 7 is a
symmetric braiding on (C, ).

Solution: First, we check that 7 is natural. For g,¢’, h,h’ € Obj(C), and f1 = ¢'z19™ %, fo =
h'zph~! in Hom(g, ¢’) and Hom(h, k') respectively, we have

(f20/1) 790 = (W22h™'0g' 219 Yhgh™ g™ = (W' g'2021(hg) " Yhgh ™' g~!
= (Wg'W =g ) (g W z122(9h) ") = 79w (/1D f2).
Next, we check that 7 satisfies the braiding relations. For g, h,t € Obj(C), we have
(id,O7y1) (14 n0id) = (heh™'Otget g~ ") (hgeh ' g~ 'Otet ™)
= (htgt tg  h Y (hgh™tg™) = (ht)g(ht)"1g~! = Tght = Tg hit



Similarly, one has 7,0+ = (74,:0idp,) (idgO7p ¢).

Finally, we show that 7 is symmetric. For g, h € Obj(C), one has

TonThg = (hgh ' g7 ") (ghg 'h™1) = e = idjng.

Exercice 3: Let I’ be a n + 1-dimensional TQFT over a field K, let X,%’ be closed oriented
n-dimensional manifolds, and let M : ¥ — ¥ be a cobordism. Let 8: X[[X — @ be a right
U-tube.

Let B = (e1,...,e,) and B* = (e, ..., e%) be basis of F(X) and F(X) such that F(3)(e;, e;) =
ij-

Let M* : ¥ — ¥ be the cobordism obtained from M by reversing inwards and outwards
boundary (while keeping the orientation of M). Show that the matrices of F(M™*) in the basis
B* is the transpose of the matrix of F'(M) in the basis B.

Solution: Considering a collar of the boundary of M, one decompose it in several cylinders
and U-tubes and get the following equivalence of cobordisms:

D) )y

b))
000

0 0
by by

Hence, applying F' we have
F(M)=(F(B)® idF(E))(idF(E) ® F(M*) & idF(Z))(idF(Z) ® F(a)),

where o : ) — L[] X is a left U-tube. Now the snake lemma gives

Fla)(1)= ) e e

1<i<n

Let A be the matrix of F(M™*) in the basis B*. We have

F(M)e; = (F(B) @ idp(s))(idps) @ F(M*) @ idps))(ei® Y € ®e¢))

1<j<n
1<5,k<n 1<j<n

which means that the matrix of F(M) in the basis B is ' A.

Exercise 4: Let K be a field. We say that a K-valued invariant of closed oriented n-dimensional
manifolds is multiplicative if it satisfies I(M [[M') = I(M)I(M’).

(1) Let F be an n + 1-TQFT and let Ir be the underlying invariant of closed oriented
n + 1-dimensional manifold. Show that I is multiplicative.



Solution: A closed n 4+ 1-manifold M is a cobordism () — ), and one has F(0)) ~ K
and F(M) € End(K) is by the definition the scalar multiplication by Ir(M). By monoidal-
ity, for M, M’ closed n + 1-manifolds, F(M [[M') ~ F(M) ® F(M') is the multiplication by
Ip(M)Ip(M'), ie. Ip(M][M')=1p(M)Ip(M') and I is multiplicative.

From now on, I will denote a multiplicative invariant of closed oriented n + 1-manifolds.

(2) Let X be a closed oriented n-dimensional manifold. Let Vx be the K-vector space formally
spanned by all cobordisms M : ) — X. We define a bilinear map (, )y, on V5 by

(M, My = (M Y 77

when M, M’ are cobordisms () — ¥ and extend bilinearily. Let Ny, C Vi be the left kernel of
(,)s, that is
x € Ny & Vy € Vy, (z,y)x = 0.

For M : ¥ — ¥ a cobordism, we define a linear map fas : Vs — Vs by

v (Mo) = MLEJMO

when M is a cobordism () — 3. Show that fj;(Nx) C Nyy.
Solution: Let x = Y A\;M; € Nyx. Then for any cobordism M’ : () — ¥, one has
i

(far(z), M')sy = Z)\Z(Ml UM, M')s = Z)\ZI(MZ UM M)

since € Ny. By bilinearity of (, )y, we deduce that fy;(x) € Nyy.
(3) For ¥ a closed oriented n-dimensional manifold, we set F7(X) = V5 /Nx.
For M : ¥ — ¥ a cobordism, we set F;(M) : Fi(X) — F;(¥') to be the map induced by

fur.

Show that Fy is a functor Cob™! — Vectk.

Solution: It is clear that F7(X) is a K-vector space and by (2), the map fys induces a
linear map F7(X) — Fj(X'). It remains to check that F; sends compositions to compositions.
However, for M : ¥ — ¥ and M’ : ¥ — X" we have fyy o far = fyruam- Indeed, for any

»/

My : ) — 2, we have
far (fm(Mo)) = fM/(MLEJMo) = (M’ Y M) y M.

The same is then true for the maps F(M).
Finally, we check that Fr(X x [0,1])(My) = My for all cobordism My : ) — 3, since
¥ x [0,1] J M ~ M and I is a diffeomorphism invariant. So Fj sends identity morphisms to

identity morphisms.

In the next questions, we will show that F7 is not necessarily a monoidal functor.



(4) Let I be the multiplicative invariant of surfaces such that I(¥,) = g. For g,b > 0 denote

by X, the unique connected cobordism ) — [ S ! whose underlying surface has genus g and
1<i<b
b boundary components. Show that for all k > 2,

Y1 — kX1 + (k— 1)2071 € Ngi.

Solution: We compute for each g > 1,

(B — kX110 + (k= 1)201,8g1) 51 = 1(Zgyx) — kI(Bg11) + (k= 1)1(X2y)
=(g+k)—kig+1)+(k—-1)g=0

Hence, by bilinearity of (,)s1 and since Vg1 is spanned by the ¥ 1, we have that X5, — kX1 1 +
(k — 1)20’1 S NSl'

(5) Show that F7(S') has dimension 2 and is spanned by Yo,1 and X ;.

Solution: The identity obtained in (4) implies that Fy(S!) is spanned by o1 and X . It
remains to show that 3o ; and 3 ; are linearly independent in Fy(S .

Assume that aXg 1 +b%1 1 € Ng1 for some constant a,b € K. Then 0 = (aXg1+b%11,%01) =
al(Xo)+bI(31) =b,and 0 = (aXg 1 +b31,1,21,1) = al(X1)+bI(X2) = a+2b. Hence a = b = 0.
So Xo,1 and ¥ are linearly independent.

Another way to show this is to remark that the matrix A = ((3;1,%;1))o<ij<1 = (? ;)
is invertible, which implies that (,)g¢1 is non-degenerate in restriction to Span(Xg 1, X1,1).

(6) Let

z= (S0 [[Z00) + Coa [T 10 = 2200 [[ Zo.1) — o2 € Vi qsn-

Show that for any g1, g2 > 0, one has

<Eg1,1 H g1 T)gt st = 0.

Solution: We compute

<29171 H g2 15 )51 st = I(Egl+1)l(292) + I(Egl)l(zgzﬂ) - 21(291)1(292) - I(Egﬁgz)
= (1 + g2+ 91(92+ 1) — 29192 — (91 + 92) = 0.

(7) Show that
(Xo,2, ) # 0.

Deduce that the ¥;; [[%;1 for 7,5 € {0,1} and Y2 are linearly independent in Fr(STI1sY),
and that F7 is not a monoidal functor.

Solution: Let B be the matrix whose entries are parametrized by 0 < 4, j, k,l < 1 and whose
coefficients in line (i, j) column (k,1) is (3;1 [[ )1, Zk1 [[Z11)s11751- Then B = A® A, where
A is the matrix introduced in (5), and therefore B is invertible. It follows that the ;1 [[3;1
for 0 < 4,7 <1 are linearly independent in F;(S']]S!). Furthermore,



(So2,2) = I(51) + I(S1) — 21(S0) — I(S1) =1+1-2-0—1=1#0.
Therefore, comparing with (6), we get that as elements of Fy(S*]]S!), one has
Yo,2 ¢ Span{¥; H Yjali, j > 0}
Thus we have found 5 linearly independent element in F;(S' [ S!) and thus
dim Fy (S [ S") <5 > 4 = dim Fy(S") ® Fy(S").

Hence F7 is not a monoidal functor.

Remark: One may however show that F7(I") is finite dimensional, for any closed 1-dimensional
manifold T



