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Lecture notes are allowed. All manifolds considered are compact and oriented.

Exercise 1:
Soit A = C[x, y]/(x2, y2) and ε : A −→ C a linear form on A.
(1) Let a, b, c, d = ε(1), ε(x), ε(y), ε(xy). Express the matrix of the pairing β in terms of

a, b, c, d.
Solution: The pairing is the map such that for z, t ∈ A, β(z, t) = ε(zt). Therefore its matrix

in the basis {1, x, y, xy} is

B = Mat{1,x,y,xy}(β) =


a b c d
b 0 d 0
c d 0 0
d 0 0 0

 .

(2) Deduce that ε is a Frobenius form if and only if ε(xy) ̸= 0.
Solution: ε is a Frobenius form if and only if the associated pairing is non-degenerate, that

is, if and only if B = Mat(β) is invertible. Since detB = −d4, this is the case iff ε(xy) ̸= 0.
(3) We now assume that a, b, c, d = 0, 0, 0, 1. Compute the co-product on A associated to ε.
Solution: We first compute the matrix A of the co-pairing α :

A = tB−1 = t


0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0


−1

=


0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

 ,

hence α(1) = 1⊗xy+x⊗y+y⊗x+xy⊗1. Now, we apply the formula ∆ = (µ⊗idA)(idA⊗α). For
t ∈ A, we get ∆(t) = (µ⊗idA)(t⊗(1⊗xy+x⊗y+y⊗x+xy⊗1)) = t⊗xy+tx⊗y+ty⊗x+txy⊗1.
In particular,

∆(1) = 1⊗ xy + x⊗ y + y ⊗ x+ xy ⊗ 1

∆(x) = x⊗ xy + xy ⊗ x

∆(y) = y ⊗ xy + xy ⊗ y

∆(xy) = xy ⊗ xy.

Exercise 2:
Let G be a group and let Z be an abelian subgroup of G. We define a category C by:

- Obj(C) = G.

- For g, h ∈ G, we set Hom(g, h) = hZg−1.



- For g1, g2, g3 ∈ G, x ∈ Hom(g2, g3) and y ∈ Hom(g1, g2), their composition is xy ∈
Hom(g1, g3). (Here, xy is the product in G)

(1) Show that the composition is well defined and that this definition indeed gives a category.

Solution: First, we note that the composition of x ∈ Hom(g2, g3) and y ∈ Hom(g1, g2) is
indeed in Hom(g1, g3). Writing x = g3zg

−1
2 and y = g2z

′g−1
1 where z, z′ ∈ Z, we have

xy = g3zz
′g−1

1 ∈ Hom(g1, g3),

since Z is a subgroup.

The associativity of composition follows directly from the associativity of the group law.

Let e be the identity element of G. For any g ∈ Obj(C), one has e = geg−1 ∈ Hom(g, g).
Furthermore, since e is an identity element, for h another object of C one has ex = x for all
x ∈ Hom(g, h), and xe = x for all x ∈ Hom(h, g). Therefore e plays the role of an identity
morphism, and C is a category.

(2) Let □ be defined as follows. For g, g′, h, h′ ∈ Obj(C) we set g□h = gh and for hzg−1 ∈
Hom(g, h) and h′z′g′−1 ∈ Hom(g′, h′), we set (hzg−1)□(h′z′g′−1) = (hh′)zz′(gg′)−1. Show
that (C,□) is a strict monoidal category, and specify what is the monoidal unit.

Solution: We first check that □ is a functor C × C −→ C, that is, that □ is compatible
with composition. For g, g′, h, h′, t, t′ ∈ Obj(C) and f1 = hz1g

−1, f2 = h′z2g
′−1, f3 =

tz3h
−1, f4 = t′z4h

′−1 in Hom(g, h),Hom(g′, h′),Hom(h, t),Hom(h′, t′), one has

(f3□f4)(f1□f2) = (tz3h
−1□t′z4h

′−1)(hz1g
−1□h′z2g

′−1) = (tt′z3z4(hh
′)−1)(hh′z1z2(gg

′)−1)

= tt′z3z4z1z2(gg
′)−1 = tt′z3z1z4z2(gg

′)−1 = tz3z1g
−1□t′z4z2g

′−1 = f3f1□f4f2

where the fourth equality uses that Z is abelian.

Moreover, we have for g, h ∈ G, idg□idh = geg−1□heh−1 = (gh)e(gh)−1 = idgh.

The associativity of □ on Obj(C) and on morphisms is clear and follows from the associa-
tivity of the product in G. Moreover, e□g = g□e = g for any g ∈ Obj(C), since e is the
identity element in C. Furthermore, for g, h ∈ Obj(C) and x = hzg−1 ∈ Hom(g, h), one has
ide□x = (eh)ez(eg)−1 = hzg−1 = x. Similarly, x□ide = x. So e is a monoidal unit.

(3) For g, h ∈ G we define τg,h ∈ Hom(g□h, h□g) by τg,h = hgh−1g−1. Show that τ is a
symmetric braiding on (C,□).

Solution: First, we check that τ is natural. For g, g′, h, h′ ∈ Obj(C), and f1 = g′z1g
−1, f2 =

h′z2h
−1 in Hom(g, g′) and Hom(h, h′) respectively, we have

(f2□f1)τg,h = (h′z2h
−1□g′z1g

−1)hgh−1g−1 = (h′g′z2z1(hg)
−1)hgh−1g−1

= (h′g′h′−1g′−1)(g′h′z1z2(gh)
−1) = τg′,h′(f1□f2).

Next, we check that τ satisfies the braiding relations. For g, h, t ∈ Obj(C), we have

(idh□τg,t)(τg,h□idt) = (heh−1□tget−1g−1)(hgeh−1g−1□tet−1)

= (htgt−1g−1h−1)(hgh−1g−1) = (ht)g(ht)−1g−1 = τg,ht = τg,h□t



Similarly, one has τg□h,t = (τg,t□idh)(idg□τh,t).

Finally, we show that τ is symmetric. For g, h ∈ Obj(C), one has

τg,hτh,g = (hgh−1g−1)(ghg−1h−1) = e = idh□g.

Exercice 3: Let F be a n + 1-dimensional TQFT over a field K, let Σ,Σ′ be closed oriented
n-dimensional manifolds, and let M : Σ −→ Σ be a cobordism. Let β : Σ

∐
Σ −→ ∅ be a right

U-tube.
Let B = (e1, . . . , en) and B∗ = (e∗1, . . . , e

∗
n) be basis of F (Σ) and F (Σ) such that F (β)(ei, e

∗
j ) =

δij .
Let M∗ : Σ −→ Σ be the cobordism obtained from M by reversing inwards and outwards

boundary (while keeping the orientation of M). Show that the matrices of F (M∗) in the basis
B∗ is the transpose of the matrix of F (M) in the basis B.

Solution: Considering a collar of the boundary of M, one decompose it in several cylinders
and U -tubes and get the following equivalence of cobordisms:

Σ Σ Σ

Σ Σ Σ

Σ Σ

Σ Σ

M M∗

β

α

≃

Hence, applying F we have

F (M) = (F (β)⊗ idF (Σ))(idF (Σ) ⊗ F (M∗)⊗ idF (Σ))(idF (Σ) ⊗ F (α)),

where α : ∅ −→ Σ
∐

Σ is a left U-tube. Now the snake lemma gives

F (α)(1) =
∑

1≤i≤n

e∗i ⊗ ei.

Let A be the matrix of F (M∗) in the basis B∗. We have

F (M)ei = (F (β)⊗ idF (Σ))(idF (Σ) ⊗ F (M∗)⊗ idF (Σ))(ei ⊗
∑

1≤j≤n

e∗j ⊗ ej)

= (F (β)⊗ idF (Σ))(ei ⊗
∑

1≤j,k≤n

Akje
∗
k ⊗ ej) =

∑
1≤j≤n

Aijej

which means that the matrix of F (M) in the basis B is tA.

Exercise 4: Let K be a field. We say that a K-valued invariant of closed oriented n-dimensional
manifolds is multiplicative if it satisfies I(M

∐
M ′) = I(M)I(M ′).

(1) Let F be an n + 1-TQFT and let IF be the underlying invariant of closed oriented
n+ 1-dimensional manifold. Show that IF is multiplicative.



Solution: A closed n + 1-manifold M is a cobordism ∅ −→ ∅, and one has F (∅) ≃ K
and F (M) ∈ End(K) is by the definition the scalar multiplication by IF (M). By monoidal-
ity, for M,M ′ closed n + 1-manifolds, F (M

∐
M ′) ≃ F (M) ⊗ F (M ′) is the multiplication by

IF (M)IF (M
′), i.e. IF (M

∐
M ′) = IF (M)IF (M

′) and IF is multiplicative.

From now on, I will denote a multiplicative invariant of closed oriented n+ 1-manifolds.
(2) Let Σ be a closed oriented n-dimensional manifold. Let VΣ be the K-vector space formally

spanned by all cobordisms M : ∅ −→ Σ. We define a bilinear map ⟨, ⟩Σ on VΣ by

⟨M,M ′⟩Σ = I(M ∪
Σ
M ′)

when M,M ′ are cobordisms ∅ −→ Σ and extend bilinearily. Let NΣ ⊂ VΣ be the left kernel of
⟨, ⟩Σ, that is

x ∈ NΣ ⇔ ∀y ∈ VΣ, ⟨x, y⟩Σ = 0.

For M : Σ −→ Σ′ a cobordism, we define a linear map fM : VΣ −→ VΣ′ by

fM (M0) = M ∪
Σ
M0

when M0 is a cobordism ∅ −→ Σ. Show that fM (NΣ) ⊂ NΣ′ .
Solution: Let x =

∑
i
λiMi ∈ NΣ. Then for any cobordism M ′ : ∅ −→ Σ′, one has

⟨fM (x),M ′⟩Σ′ =
∑
i

λi⟨Mi ∪
Σ
M,M ′⟩Σ′ =

∑
i

λiI(Mi ∪
Σ
M ∪

Σ′
M ′)

=
∑
i

λi⟨Mi,M ∪
Σ′

M ′⟩Σ = ⟨x,M ∪
Σ′

M ′⟩Σ = 0

since x ∈ NΣ. By bilinearity of ⟨, ⟩Σ′ , we deduce that fM (x) ∈ NΣ′ .
(3) For Σ a closed oriented n-dimensional manifold, we set FI(Σ) = VΣ/NΣ.
For M : Σ −→ Σ′ a cobordism, we set FI(M) : FI(Σ) −→ FI(Σ

′) to be the map induced by
fM .

Show that FI is a functor Cobn+1 −→ VectK.
Solution: It is clear that FI(Σ) is a K-vector space and by (2), the map fM induces a

linear map FI(Σ) −→ FI(Σ
′). It remains to check that FI sends compositions to compositions.

However, for M : Σ −→ Σ′ and M ′ : Σ′ −→ Σ′′, we have fM ′ ◦ fM = fM ′∪
Σ′
M . Indeed, for any

M0 : ∅ −→ Σ, we have

fM ′(fM (M0)) = fM ′(M ∪
Σ
M0) = (M ′ ∪

Σ′
M) ∪

Σ
M0.

The same is then true for the maps FI(M).
Finally, we check that FI(Σ × [0, 1])(M0) = M0 for all cobordism M0 : ∅ −→ Σ, since

Σ × [0, 1] ∪
Σ
M ≃ M and I is a diffeomorphism invariant. So FI sends identity morphisms to

identity morphisms.

In the next questions, we will show that FI is not necessarily a monoidal functor.



(4) Let I be the multiplicative invariant of surfaces such that I(Σg) = g. For g, b ≥ 0 denote
by Σg,b the unique connected cobordism ∅ →

∐
1≤i≤b

S1 whose underlying surface has genus g and

b boundary components. Show that for all k ≥ 2,

Σk,1 − kΣ1,1 + (k − 1)Σ0,1 ∈ NS1 .

Solution: We compute for each g ≥ 1,

⟨Σk,1 − kΣ1,1 + (k − 1)Σ0,1,Σg,1⟩S1 = I(Σg+k)− kI(Σg+1) + (k − 1)I(Σg)

= (g + k)− k(g + 1) + (k − 1)g = 0

Hence, by bilinearity of ⟨, ⟩S1 and since VS1 is spanned by the Σg,1, we have that Σk,1 − kΣ1,1 +
(k − 1)Σ0,1 ∈ NS1 .

(5) Show that FI(S
1) has dimension 2 and is spanned by Σ0,1 and Σ1,1.

Solution: The identity obtained in (4) implies that FI(S
1) is spanned by Σ0,1 and Σ1,1. It

remains to show that Σ0,1 and Σ1,1 are linearly independent in FI(S
1).

Assume that aΣ0,1+bΣ1,1 ∈ NS1 for some constant a, b ∈ K. Then 0 = ⟨aΣ0,1+bΣ1,1,Σ0,1⟩ =
aI(Σ0)+ bI(Σ1) = b, and 0 = ⟨aΣ0,1+ bΣ1,1,Σ1,1⟩ = aI(Σ1)+ bI(Σ2) = a+2b. Hence a = b = 0.
So Σ0,1 and Σ1,1 are linearly independent.

Another way to show this is to remark that the matrix A = (⟨Σi,1,Σj,1⟩)0≤i,j≤1 =

(
0 1
1 2

)
is invertible, which implies that ⟨, ⟩S1 is non-degenerate in restriction to Span(Σ0,1,Σ1,1).

(6) Let

x = (Σ1,1

∐
Σ0,1) + (Σ0,1

∐
Σ1,1)− 2(Σ0,1

∐
Σ0,1)− Σ0,2 ∈ VS1

∐
S1 .

Show that for any g1, g2 ≥ 0, one has

⟨Σg1,1

∐
Σg2,1, x⟩S1

∐
S1 = 0.

Solution: We compute

⟨Σg1,1

∐
Σg2,1, x⟩S1

∐
S1 = I(Σg1+1)I(Σg2) + I(Σg1)I(Σg2+1)− 2I(Σg1)I(Σg2)− I(Σg1+g2)

= (g1 + 1)g2 + g1(g2 + 1)− 2g1g2 − (g1 + g2) = 0.

(7) Show that
⟨Σ0,2, x⟩ ≠ 0.

Deduce that the Σi,1
∐

Σj,1 for i, j ∈ {0, 1} and Σ0,2 are linearly independent in FI(S
1
∐

S1),
and that FI is not a monoidal functor.

Solution: Let B be the matrix whose entries are parametrized by 0 ≤ i, j, k, l ≤ 1 and whose
coefficients in line (i, j) column (k, l) is ⟨Σi,1

∐
Σj,1,Σk,1

∐
Σl,1⟩S1

∐
S1 . Then B = A⊗A, where

A is the matrix introduced in (5), and therefore B is invertible. It follows that the Σi,1
∐

Σj,1

for 0 ≤ i, j ≤ 1 are linearly independent in FI(S
1
∐

S1). Furthermore,



⟨Σ0,2, x⟩ = I(Σ1) + I(Σ1)− 2I(Σ0)− I(Σ1) = 1 + 1− 2 · 0− 1 = 1 ̸= 0.

Therefore, comparing with (6), we get that as elements of FI(S
1
∐

S1), one has

Σ0,2 /∈ Span{Σi,1

∐
Σj,1|i, j ≥ 0}.

Thus we have found 5 linearly independent element in FI(S
1
∐

S1) and thus

dimFI(S
1
∐

S1) ≤ 5 > 4 = dimFI(S
1)⊗ FI(S

1).

Hence FI is not a monoidal functor.

Remark: One may however show that FI(Γ) is finite dimensional, for any closed 1-dimensional
manifold Γ.


