UFR Sciences et Techniques

Introduction to TQFT

Exercice 1:

(1) Let F be a $n+1$-dimensional TQFT over a field \mathbb{K}, let M be a n-dimensional manifold, and let $W: M \rightarrow M$ be a cobordism. Show that if $F(W)$ is non-invertible, then W is not equivalent to a mapping cylinder.

Solution: Recall that for $f, g \in \operatorname{Diff}(M)$, we have $C_{f} \circ C_{g}$ is equivalent to $C_{f g}$, where C_{f} is the mapping cylinder of f. Hence

$$
F\left(C_{f}\right) \circ F\left(C_{f^{-1}}\right)=F\left(C_{i d_{M}}\right)=i d_{F(M)},
$$

hence $F\left(C_{f}\right)$ is invertible. Therefore if $F(W)$ is not invertible, W is not equivalent to a mapping cylinder.
(2) We now assume that $n=2$. Let Σ_{g} denote the closed compact oriented surface of genus g. Let S and S^{\prime} be two surfaces, and let $M: S \rightarrow S^{\prime}$ be a connected $2+1$-cobordism. Show that if $\operatorname{dim} F\left(\Sigma_{g}\right)<r k(F(M))$, then there is no embedding $i: \Sigma_{g} \longrightarrow M$, such that $M \backslash i\left(\Sigma_{g}\right)$ is disconnected.

Solution: We will prove it by contraposition. Consider M_{1} (resp. M_{2}) the connected component of $M \backslash i\left(\Sigma_{g}\right)$ containing S, S^{\prime}. Make M_{1}, M_{2} into cobordisms $S \longrightarrow \Sigma_{g}, \Sigma_{g} \longrightarrow S^{\prime}$ using i as identification map. Then $M=M_{1} \circ M_{2}$, and $F(M)=F\left(M_{1}\right) \circ F\left(M_{2}\right)$, which implies that $r k(F(M)) \leq r k\left(F\left(M_{1}\right)\right) \leq \operatorname{dim} F\left(\Sigma_{g}\right)$.

Exercise 2:

Let $n \geq 2$ be an integer, let $A=\mathbb{C}[t] /\left(t^{n}\right)$ and let $\varepsilon: A \rightarrow \mathbb{C}$ be a linear form on A.
(1) Show that ε is a Frobenius form if and only if $\varepsilon\left(t^{n-1}\right) \neq 0$.
(2) For $0 \leq i \leq n-1$, we set $a_{i}=\varepsilon\left(t^{i}\right)$. Express the matrix of the pairing β in the basis $\left\{1, t, \ldots, t^{n-1}\right\}$ in terms of a_{0}, \ldots, a_{n-1}.

Solution to (1) and (2): Note that $1, t, \ldots, t^{n-1}$ is a basis of A. For $0 \leq i, j \neq n-1$, we have

$$
\beta\left(t^{i}, t^{j}\right)=\varepsilon\left(t^{i+j}\right)=\left\{\begin{array}{l}
0 \text { if } i+j \geq n \\
a_{i+j} \text { else }
\end{array}\right.
$$

Therefore, the matrix of β is

$$
\left(\begin{array}{cccc}
a_{0} & \ldots & a_{n-2} & a_{n-1} \\
\vdots & . \cdot & . \cdot & 0 \\
a_{n-2} & a_{n-1} & . \cdot & \vdots \\
a_{n-1} & 0 & \ldots & 0
\end{array}\right)
$$

Its determinant is $(-1)^{n} a_{n-1}^{n}$, hence it is invertible if and only if $a_{n-1} \neq 0$, so ε is a Frobenius form iff $a_{n-1} \neq 0$.

Alternatively, for (1), one could show that the only ideals in A are $A, t A, \ldots t^{n-1} A$.
(3) Show that the matrix of the co-pairing α is

$$
\left(\begin{array}{cccc}
0 & \cdots & 0 & b_{n-1} \\
\vdots & . \cdot & b_{n-1} & b_{n-2} \\
0 & . \cdot & . \cdot & \vdots \\
b_{n-1} & b_{n-2} & \cdots & b_{0}
\end{array}\right),
$$

where $b_{n-1}=\frac{1}{a_{n-1}}$, and for any $2 \leq i \leq n$,

$$
b_{n-i}=-\frac{\left(a_{n-2} b_{n-i+1}+\ldots+a_{n-i} b_{n-1}\right)}{a_{n-1}} .
$$

Solution: For $b_{0}, \ldots, b_{n-1} \in \mathbb{C}$, we have that:

$$
\left(\begin{array}{cccc}
a_{0} & \ldots & a_{n-2} & a_{n-1} \\
\vdots & . \cdot & . \cdot & 0 \\
a_{n-2} & a_{n-1} & . \cdot & \vdots \\
a_{n-1} & 0 & \ldots & 0
\end{array}\right)\left(\begin{array}{cccc}
0 & \ldots & 0 & b_{n-1} \\
\vdots & . \cdot & b_{n-1} & b_{n-2} \\
0 & . \cdot & . \cdot & \vdots \\
b_{n-1} & b_{n-2} & \ldots & b_{0}
\end{array}\right)=\left(\begin{array}{cccc}
c_{0} & c_{1} & \ldots & c_{n-1} \\
0 & c_{0} & \ddots & \vdots \\
\vdots & \ddots & \ddots & c_{1} \\
0 & \ldots & 0 & c_{0}
\end{array}\right)
$$

where $c_{0}=a_{n-1} b_{n-1}$ and for $i \geq 2, c_{i-1}=a_{n-1} b_{n-i}+a_{n-2} b_{n-i+1} \ldots+a_{n-i} b_{n-1}$.
So the matrices are inverse of each other if and only if $a_{n-1} b_{n-1}=1$ and for $2 \leq i \leq n$, we have

$$
a_{n-1} b_{n-i}+a_{n-2} b_{n-i+1}=0,
$$

which is equivalent to the identities asked.
(4) Let F_{A} be the $1+1$-TQFT associated to A. Show that the handle element for F_{A} is

$$
w=\frac{n t^{n-1}}{a_{n-1}} .
$$

Solution: We use the expression of the handle element in terms of the matrix $\left(\alpha_{i, j}\right)_{0 \leq i, j \leq n-1}$ of the co-pairing α in the basis $1, t, \ldots, t^{n-1}$. The handle element is

$$
w=\sum_{0 \leq i, j \leq n-1} \alpha_{i, j} t^{i} t^{j}=n b_{n-1} t^{n-1}=\frac{n t^{n-1}}{a_{n-1}},
$$

since $t^{i+j}=0$ if $i+j>n-1$, and $\alpha_{i, j}=0$ if $i+j<n-1$, and $\alpha_{i, j}=b_{n-1}$ if $i+j=n-1$.
(5) Compute $F_{A}\left(\Sigma_{g}\right)$ for any connected closed oriented surface of genus $g \geq 0$.

Solution: Recall that a surface of genus g is the cobordism $1 \circ(\Delta \circ \mu)^{g} \varepsilon$, and $\Delta \circ \mu$ is the multiplication by the handle element w. Therefore, $F_{A}\left(\Sigma_{g}\right)=\varepsilon\left(w^{g}\right)$.

By question (4):

$$
F_{A}\left(\Sigma_{g}\right)=\left\{\begin{array}{l}
\varepsilon(1)=a_{0} \text { if } g=0 \\
\varepsilon(w)=\varepsilon\left(\frac{n t^{n-1}}{a_{n-1}}\right)=n \text { if } g=1 \\
\varepsilon\left(w^{g}\right)=\varepsilon(0)=0 \text { if } g \geq 2 .
\end{array}\right.
$$

Exercise 3:

Let $(A, \mu, 1, \Delta, \varepsilon)$ be a Frobenius algebra, and assume that the product is commutative.
(1) Show that $\alpha \circ \tau=\alpha$, where α is the co-pairing and $\tau: A \otimes A \rightarrow A \otimes A$ is the twist.

Solution: Let e_{1}, \ldots, e_{n} be a basis of A. Since the product is commutative, then $\beta\left(e_{i}, e_{j}\right)=$ $\varepsilon\left(e_{i} e_{j}\right)=\varepsilon\left(e_{j} e_{i}\right)=\beta\left(e_{j}, e_{i}\right)$. Therefore the matrix of the pairing is symmetric. Hence, the matrix of the co-pairing α is symmetric, since it is the transpose of the inverse of the matrix of β.

Then

$$
(1) \alpha \circ \tau=\left(\sum_{i, j} \alpha_{i, j} e_{i} \otimes e_{j}\right) \tau=\sum_{i, j} \alpha_{i, j} e_{j} \otimes e_{i}=\sum_{i, j} \alpha_{i, j} e_{i} \otimes e_{j}=(1) \alpha
$$

(2) Using the two expressions of Δ in terms of the co-pairing, show that the co-product is cocommutative.

Solution:

We need to show that $\Delta \circ \tau=\Delta$, which we do by graphical calculus as follows:

Note that in the first and fourth equality, we used the naturality of the twist, in the second the relation $\alpha \circ \tau=\alpha$, and in the third, the relation $\tau \circ \mu=\mu$, as the product is commutative.

Exercise 4:

In this exercise, we will study the monoidal functors from the category Tangles of tangles in $D^{2} \times[0,1]$ to the category $V^{2} t_{\mathbb{K}}$ of \mathbb{K}-vector spaces. We recall that the category of tangles is generated by the elementary tangles represented in the diagram below:

We also denote as p the object of Tangles consisting of a single point in D^{2}.
(1) Let $F:$ Tangles \longrightarrow Vect $_{\mathbb{K}}$ be a monoidal functor. Let $V=F(p), R=F\left(c_{+}\right), R^{\prime}=$ $F\left(c_{-}\right), \alpha=F(u)$, and $\beta=F(n)$.

Show that the following relations are satisfied:

$$
\begin{align*}
R R^{\prime}=R^{\prime} R= & \mathrm{id}_{V \otimes V} \tag{1}\\
\left(R \otimes i d_{V}\right)\left(i d_{V} \otimes R\right)\left(R \otimes i d_{V}\right)= & \left(i d_{V} \otimes R\right)\left(R \otimes i d_{V}\right)\left(i d_{V} \otimes R\right) \tag{2}\\
R \beta=\beta, & \alpha R=\alpha \tag{3}\\
\left(\alpha \otimes i d_{V}\right)\left(i d_{V} \otimes \beta\right)= & i d_{V}=\left(i d_{V} \otimes \alpha\right)\left(\beta \otimes i d_{V}\right) \tag{4}
\end{align*}
$$

Solution: Since F is a monoidal functor, those equations are consequences of the tangle relations below:

(2) Deduce from Equation (4) above that V is finite dimensional.

Solution: Equation (4) is analoguous to the snake relations for U-tubes in TQFT. We prove the finite dimensionality of V in the same way:

Let $(1) \alpha=\sum_{1 \leq i \leq k} v_{i} \otimes w_{i}$, where $v_{i}, w_{i} \in V$. Then for any $x \in V$,

$$
x=(x) i d_{V}=(x)\left(\alpha \otimes i d_{V}\right)\left(i d_{V} \otimes \beta\right)=\sum_{1 \leq i \leq k}\left(v_{i} \otimes w_{i} \otimes x\right)\left(i d_{V} \otimes \beta\right)=\sum_{1 \leq i \leq k} \beta\left(w_{i}, x\right) v_{i}
$$

so v_{1}, \ldots, v_{k} span V, and V is finite dimensional.
(3) We call a link with $n \geq 1$ components an isotopy class of embeddings of $\coprod_{i=1}^{n} S^{1}$ in the interior of $D^{2} \times[0,1]$.

Explain why a monoidal functor F : Tangles \longrightarrow Vect $_{\mathbb{K}}$ induces a \mathbb{K}-valued invariant of links.
Solution: A link L is a tangle from $\left(D^{2}, \emptyset\right)$ to $\left(D^{2}, \emptyset\right)$, which is the monoidal unit of the category Tangles. Therefore its image by the monoidal functor F is a map $F(L): \mathbb{K} \longrightarrow \mathbb{K}$, that is $F(L)$ is an element of \mathbb{K}. Also by definition of the category of tangles, $F(L)$ depends only on the isotopy class of L, so it is a \mathbb{K}-valued invariant of links.

